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1  | INTRODUC TION

The Bering Sea region is a system with complex interactions be-
tween its oceanographic, climatic, and biological components 

(Aydin & Mueter, 2007). In the past, this region was character-
ized by extensive seasonal ice cover, tight benthic–pelagic cou-
pling in the northern region, and a large demersal fish community 
(Grebmeier et al., 2006). As conditions have warmed over the past 
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Abstract
The northern Bering Sea is transitioning from an Arctic to subarctic fish community 
as climate warms. Scientists and managers aim to understand how these changing 
conditions are influencing fish biomass and spatial distribution in this region, as both 
are used to inform stock assessments and fisheries management advice. Here, we use 
a spatio-temporal model for walleye pollock (Gadus chalcogrammus) to provide two 
inputs to its stock assessment model: (a) an alternative model-based biomass index 
and (b) alternative model-based age compositions. Both inputs were derived from 
multiple fishery-independent data that span different regions of space and time. We 
developed an assessment model that utilizes both the standard and model-based in-
puts from multiple surveys despite inconsistencies in spatial and temporal coverage, 
and we found that using these data provide an improved spatial and temporal scope 
of total pollock biomass. Age composition information indicated that pollock density 
is increasing and moving farther north, particularly for older pollock. We found that 
including an index of cold pool extent could be used to extrapolate pollock densities 
in the northern Bering Sea in unsampled years. Stock assessment parameter esti-
mates were similar for standard and model-based input. This study demonstrates 
that spatio-temporal model-based estimates of a biomass index and age composition 
can facilitate rapid changes in stock assessment structure in response to climate-
driven shifts in spatial distribution. We conclude that assimilating data from regions 
neighboring standard survey areas, such as the Chukchi Sea and western Bering Sea, 
would improve understanding and management efforts as fish distributions change 
under a warming climate.
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40 years, there is evidence of potentially impactful changes in the 
northeastern Bering Sea that are typically associated with atmo-
spheric and oceanographic forcing (e.g., Pacific Decadal Oscillation 
and Arctic Oscillation; Grebmeier et al., 2006; Hunt et al., 2002; 
Overland & Stabeno, 2004). Warming ocean conditions may lead 
to changes in Bering Sea fish productivity and distribution, as ob-
served in other systems (Audzijonyte et al., 2016; Audzijonyte, 
Kuparinen, Gorton, & Fulton, 2013; Engelhard, Righton, & 
Pinnegar, 2014; Johnson et al., 2015; Kleisner et al., 2017; Nye, 
Link, Hare, & Overholtz, 2009; Pinsky, Worm, Fogarty, Sarmiento, 
& Levin, 2013; Pörtner & Knust, 2007). For fisheries management 
to be able to respond to changes in fish productivity and distribu-
tion in the Bering Sea, the first step is to identify which species are 
most affected. Quantitatively identifying and assessing changes in 
fish productivity and distribution in response to climate is a rapidly 
developing research topic in ecology, oceanography, and fisheries 
(Furuichi et al., 2020; Holsman et al., 2019; Schmidt et al., 2019; 
Thorson, Ianelli, et al., 2016; Thorson, Pinsky, & Ward, 2016; 
Tommasi et al., 2017; Torre, Tanaka, & Chen, 2019).

Quantitative links between fish productivity and oceano-
graphic conditions were established in other systems using ocean-
ographic indices. For example, on the east coast of the United 
States, both the Gulf Stream position and Northwest Atlantic 
Cold Pool index were shown to influence recruitment estimates 
for yellowtail flounder (Xu, Miller, Hameed, Alade, & Nye, 2018). 
The Gulf Stream position also provided more precise estimates 
of past summer flounder abundance (O'Leary, Miller, Thorson, & 
Nye, 2018). Another study captured the distribution shifts of fish 
species across the global ocean with an oceanographic index that 
combined the direction of ocean current flow and thermal gradi-
ent shifts (García Molinos, Burrows, & Poloczanska, 2017). In the 
Bering Sea, a prominent oceanographic feature that could be used 
in a similar way to these studies is the “cold pool” extent. The “cold 
pool” is a subsurface feature defined by temperatures below 2°C 
that forms a barrier between Bering Sea regions for a variety of 
species, including walleye pollock (Gadus chalcogrammus, hereaf-
ter referred to as pollock; Wylie-Echeverria and Wooster 1998). 
The spatial extent of the “cold pool” is strongly associated with the 
quantity of winter sea ice that forms in spring and lasts through 
the summer months (Schumacher, Aagaard, Pease, & Tripp, 1983; 
Stabeno, Bond, Kachel, Salo, & Schumacher, 2001). In 2018 and 
2019, the cold pool area reached historic lows due to low winter ice 
formation and warmer air temperatures.

During this period of low cold pool extent, fish distributions 
were also observed to change (Grebmeier et al., 2006; Kotwicki 
& Lauth, 2013; Stevenson & Lauth, 2019). For pollock, previous 
work established a link between southward shifts in distribu-
tion and a larger cold pool extent (Kotwicki, Buckley, Honkalehto, 
& Walters, 2005; Kotwicki, Lauth, Williams, & Goodman, 2017; 
Thorson, 2019b). There are likely other factors that influence the 
extent of pollock distribution, including strong recruitment years, 
ontogenetic shifts, in situ light conditions, fishing pressure, species 

interactions, and density-dependent expansion (Nøttestad, Giske, 
Holst, & Huse, 1999; Gratwicke, Petrovic, & Speight, 2006; Ciannelli, 
Fauchald, Chan, Agostini, & Dingsør, 2008; Spencer, 2008; Kotwicki, 
De Robertis, von Szalay, & Towler, 2009; Garrison et al., 2010; Hicks 
et al. 2014; Thorson, Ianelli, & Kotwicki, 2017; Kotwicki et al., 2017).

Recent advances in spatio-temporal modeling facilitate includ-
ing environmental covariates to relate oceanographic conditions to 
estimates of fish biomass and distribution (Latimer, Banerjee, Sang, 
Mosher, & Silander, 2009; Perretti & Thorson, 2019; Thorson, 2019a; 
Thorson & Barnett, 2017). Here, we adopt these spatio-temporal 
modeling techniques to understand how changes in Bering Sea hab-
itat are altering pollock biomass and spatial distribution. Specifically, 
we adapted a spatio-temporal model referred to as vector autore-
gressive spatio-temporal (VAST) as demonstrated in Thorson, 
Shelton, Ward, and Skaug (2015). We use VAST because this ap-
proach can (a) explicitly distinguish between habitat and vessel char-
acteristics when attributing variation in expected catch rates and (b) 
extrapolate information from nearby areas to estimate densities (al-
beit with higher variances) when data are missing (Thorson, 2019a). 
The VAST model distinguishes between habitat change and vessel 
effects using random effects, while also allowing for estimation of 
habitat covariates, such as ocean temperature. We can thus test 
habitat and vessel effect covariates and decompose sampling vari-
ance into different covariate sources for pollock with estimates of 
encounter probability and biomass across space and time. VAST 
can provide population density estimates for multiple locations 
through time by considering that process and observation error are 
more similar at geographically close locations (Gudmundsson, 1994; 
Punt, 2003; Thorson, 2019a). Indices derived from such spatio-tem-
poral models better account for response variables (such as cold 
pool extent), while also estimating known and unknown process and 
observation errors (Thorson, 2019a).

In the Bering Sea system, adult groundfish spatial distributions 
are shifting north outside of the “standard” EBS bottom trawl sur-
vey area as the physical barrier of the cold pool extent is reduced. 
In response, in recent years (2010, 2017–2019) the EBS survey has 
extended into the northern Bering Sea (NBS) region to better track 
adult groundfish densities, including pollock (Figure S1). We use 
VAST to combine these data to evaluate alternative model-based 
biomass indices within the pollock stock assessment used for fish-
eries management advice. We also evaluate the impact of adapt-
ing spatio-temporal methods on age composition estimates. We fit 
the stock assessment model using three different combinations of 
the indices and age compositions: (a) bottom trawl biomass indices 
and age compositions generated in a design-based method from 
NBS and EBS survey data, (b) model-based biomass indices and de-
sign-based age compositions using NBS and EBS survey data, and 
(c) model-based biomass indices and age compositions using NBS 
and EBS survey data. In doing so, we aim to understand if envi-
ronmental covariates in the Bering Sea region provide improved 
information and insight on biomass estimates and area occupied 
by pollock.
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2  | METHODS

2.1 | Overview

The pollock stock is broadly distributed throughout the North 
Pacific, with the largest concentrations and fishery in the EBS (Ianelli 
et al., 2019). There are two pollock fishing seasons in this region: one 
in winter (Jan–April) with 45% of the catch allocated and a second 
one in summer that operates from June 10 until the end of October. 
The winter season is generally concentrated in regions north and 
west of Unimak Island extending along the slope to just north of 
the Pribilof Islands (depending on ice conditions; Figure 1; Ianelli 
et al., 2019). In the summer season, the spatial pattern of the fish-
ery is variable but extends north of the Pribilofs and often close to 
the Russian border (Figure 1). Data from the fishery, as collected by 
scientifically trained observers covering the entire fleet and all op-
erations at sea and during port offloads, comprise total catch and 
biological samples on the age, sex, and size composition of the catch. 
These data are also used in the age-structured pollock stock assess-
ment model.

In addition to fishery data, fishery-independent surveys are an-
nually conducted and used in the assessment. The survey data are 
processed to provide a biomass index (for overall trends) and the 
annual sex, size, and age composition of that biomass (converted to 
proportions contributing to estimation of the relative age composi-
tion of the stock). Prior to including these indices and derived data 
components into an aggregated assessment model, spatial patterns 
are evaluated to determine if assumptions of a “(mostly) closed pop-
ulation” are violated. Recent bottom trawl surveys show that pollock 
summertime distribution has extended into NBS regions beyond the 
area of the “standard” survey (Fig. S1). One of the hypotheses for the 
cause of distribution extension is dissipation of a normal “cold pool” 
barrier in recent years. Surveys into the northern area outside of the 
standard survey were conducted in 2010, and then again from 2017 
to 2019. The more recent data indicate that reductions in the annual 

cold pool extent allowed cross-shelf migration, which led to more 
northward movement in the Bering Sea (Ciannelli & Bailey, 2005). 
Preliminary genetic data suggest that pollock observed in the north-
ern survey extension area belong to the EBS stock that is vulnerable 
to the main pollock fishery (Ianelli et al., 2019).

To account for some of the environmental and spatial patterns 
observed in the survey (depicted in Figure S1), we analyzed the raw 
survey data using a multivariate spatio-temporal approach to esti-
mate alternative survey biomass indices and age composition data. 
We applied the R package “VAST” (release number 3.2.2; Kristensen, 
Nielsen, Berg, Skaug, & Bell, 2016; Thorson, 2019a; Thorson & 
Barnett, 2017). This approach is an extension of a delta-generalized 
linear mixed model (GLMM) framework. Spatial variation is captured 
using a Gaussian Markov random field among years. Here, we gen-
erate model-based indices using two alternative model formulations: 
(a) an alternative biomass index using spatio-temporal index model 
without cold pool effects to generate indices, (b) an alternative bio-
mass index using spatio-temporal index model with cold pool effects 
to generate indices. We also generate model-based age composi-
tions using age-based spatio-temporal model. These indices and 
age compositions were then used as alternative inputs to the stock 
assessment model in the three previously mentioned combinations: 
(a) bottom trawl biomass indices and age compositions generated 
in a design-based method from NBS and EBS survey data, (b) mod-
el-based biomass indices and design-based age compositions using 
NBS and EBS survey data, and (c) model-based biomass indices and 
age compositions. Results, as used for providing management ad-
vice, were compared among these alternative data sources.

2.2 | Data

Data were collected during the standardized bottom trawl surveys 
from the EBS (Stauffer 2004) with extensions into the NBS (Figure 1; 
Lauth, Dawson, and Conner 2019). The EBS survey data were from 

F I G U R E  1   Survey extent for the 
Alaska Fisheries Science Center eastern 
Bering Sea bottom trawl survey (green) 
and northern Bering Sea bottom trawl 
extension (blue) [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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1982 to 2019 and collected during June to August. The standard 
EBS shelf survey consists of approximately 376 fixed stations cov-
ering depths from 20 to 200 m using the same standard trawl dur-
ing all years. The NBS extension uses the same methodologies and 
comprises an additional 143 fixed stations with depths ranging from 
11–79 m. The NBS area was sampled in 2010, 2017–2019 (but at 
a lower sampling density, 41 stations, in 2018). Some earlier sta-
tions were sampled in 1982, 1985, 1988, and 1991 but the num-
ber of stations and area covered varied widely in those years (Ianelli 
et al., 2019). Survey station data are compiled to a catch rate in num-
bers and weight of fish per hectare, which is the catch divided by 
the “area swept” for each survey trawl (Alverson & Pereyra, 1969). 
These surveys use the same vessels, personnel, and gear, and so dif-
ferences in sampling effort and observational uncertainty are mini-
mized (Kotwicki et al., 2017).

The trawl catches are subsampled to estimate catch rates at age. 
To obtain these estimates, the catch rates for each (1 cm) length 
category were estimated using the “area swept” method and pro-
portion at length obtained from length–frequency data. Catch rates 
at length were then converted to catch rates at age at each station 
using age-length keys (Fridriksson, 1934). This conversion was done 
for each length category using year-specific age-length keys for all 
years when age samples were collected. For years when age samples 
were not collected, a “global” age-length key that contains data from 
all available years was used.

The habitat covariate was the cold pool index (CPI). The CPI is an 
annual index of the measure of the spatial extent of the cold pool (in 
square kilometers) for bottom temperatures in the Bering Sea that 
are 2°C or colder (Stabeno, Kachel, Sullivan, & Whitledge, 2002). 
We modified this index and used 0°C as the temperature cutoff 
for the cold pool extent because Kotwicki and Lauth (2013) found 
that pollock distribution was most responsive to temperatures 0°C 
and colder. In the EBS, ecosystem processes are driven largely by 
timing of ocean stratification and consequent nutrient availability 
(Stabeno et al. 2012). Ocean stratification timing is largely driven 
by sea ice coverage and consequent warming or buffering of the 
bottom layer temperature (Stabeno et al. 2012). When ice retreats 
before early March and the cold pool is small, the bottom layer 
temperature is often >2°C because the sea ice that insulates that 
bottom temperature is removed. However, if the ice retreats later 
in the year and maintains stratification for longer, the bottom layer 
in the Bering Sea shelf is insulated from warming (Stabeno, Bond, & 
Salo, 2007; Stabeno et al., 2002). The cold pool acts as a cross-shelf 
barrier due to these ice and temperature characteristics, prevent-
ing subarctic fish migration to more northern waters (Ciannelli & 
Bailey, 2005; Kotwicki et al., 2005; Stabeno et al. 2012).

2.3 | Estimating biomass indices from two survey 
data sources with environmental indices

Alternative biomass indices for the EBS and NBS were estimated using 
a spatio-temporal index model with and without cold pool effects 

(model-based index generation formulation a. and b. from Methods 
section). Biomass indices were estimated using multiple spatially un-
balanced data sets and VAST spatio-temporal model to determine 
changes over time in the spatial distribution of pollock (Thorson 
& Barnett, 2017). We used epsilon bias-corrected biomass indices 
to correct for retransformation bias (Thorson & Kristensen, 2016). 
Data were analyzed from multiple surveys using a Poisson-link delta 
model, while using a gamma distribution for the observation error 
distribution of the positive catch rates (Thorson, 2018). Changes in 
encounter probability p and positive catch rate (here, biomass den-
sity) r are separately modeled (Thorson, 2018). A probability distri-
bution is specified for the sampled biomass bi for each sample i given 
the predicted encounter probability pi and positive catch rate ri.

with shape �−2 and scale ri �2b. In the Poisson-link delta model, the den-
sity of individuals is n(s,t) and the average biomass per individual w(s,t) 
are modeled at each location s and year t. The predicted density of 
individuals at sample i follows a Poisson process with the expectation 
ni. The encounter probability pi for the Poisson process for each sample 
i in location s and time t then

assuming individuals are randomly distributed in the sampling region. 
The encounter probability is offset by for the area swept ai for each 
sample i. The positive catch rate ri in this case is then defined by the 
biomass density d(s,t) = r(s,t)p(s,t)=n(s,t)w(s,t) where

Last, the numbers density n(s,t) and biomass per individual w(s,t) 
are defined using a Poisson log-link function

where wn(s) and ww(s) represent spatial variation, �n (s, t) and �w (s, t) 
represent spatio-temporal variation in n and w, �n (t) and �w (t) are in-
tercepts for w and n, T(t) is the CPI for each year t, γn represents the 
log-linear impact of the CPI on numbers density, and γw represents the 
log-liner impact of the CPI on average weight.

Encounter and biomass spatial variance as well as encounter and 
biomass spatio-temporal variance were all estimated for a single spe-
cies. The probability of encounter intercept and biomass intercept was 
both estimated as fixed effects. Sampling variation was decomposed 
further to include a habitat covariate as predictors of p and r to estimate 
the impact of a habitat covariate on local density. Habitat covariates 
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were assumed to be independent for n(s,t) and w(s,t). The encounter 
and biomass spatio-temporal variance were estimated following a 
first-order autoregressive process across years. The spatial domain 
was set to include 250 knots representing the Gaussian random fields. 
Sampling variation was split into different sources including (a) annual 
variation in encounter rates and catch rates, (b) environmental covari-
ates (cold pool), (c) spatial variation, and (d) spatio-temporal variation.

The spatial smoothing at every location si for models estimating 
biomass indices is interpolated using bilinear interpolation in a trian-
gulated mesh (Lindgren, 2012; Lindgren and Rue, 2015). This inter-
polation technique assigns an interpolated value into the location of 
interest si by using the weighted average of the four closest neighbors 
(as opposed to the nearest neighbor in k-nearest neighbor algorithms; 
Wang, Hamann, Spittlehouse, & Aitken, 2006). In this approach, nearer 
neighbors are given higher weights. Bilinear interpolation is ideal for 
continuous data sets without distinct boundaries; thus, it is ideal for 
spatio-temporal biological models paired with continuous oceano-
graphic habitat descriptors. Extrapolated predicted population densi-
ties in unsampled areas followed an exponential decay away from the 
predicted density in the nearest sampled year toward average density 
as a function of the number of elapsed years since sampling data were 
available (Thorson, 2019a). The goodness-of-fit for each VAST model 
fit was evaluated using Akaike information criterion (AIC), an approach 
that identifies the models that best fit the available data based on the 
Akaike weight (Akaike, 1974).

2.4 | Range shift metrics

We calculated two metrics for density predictions: centroid of 
population distribution Z(t,m) (or the “center of gravity”) and the 
effective area occupied for density predictions (Thorson, Pinsky, 
et al., 2016). Both of these calculations rely on the biomass index 
I(t,l), defined by a(s,l) the area swept in each stratum l at each lo-
cation s for each stratum l and the predicted population density 
d*(s,t).

The centroid of the population distribution, Z(t,m) over time t 
when stratum l = 1, or the mean location weighted by population 
density, is

for m measures of center of gravity, where a(s,l) is the area swept in 
each stratum l at each location s and stratum l, d(s,t) is the predicted 
density for location s in year t, and z(s, m) is the statistic for each loca-
tion used to calculate the center of gravity.

The effective area occupied, or the area that contains the total 
index given its average density for each year t and stratum l, is the 

ratio of the biomass index I(t,l) over the average density D(t,l) for 
each stratum l.

where the average density a(s,l) is defined by the swept area in each 
stratum l at each location s, predicted population density d*(s,t), and 
biomass index I(t,l)

More details on these derived quantities can be found in Thorson 
(2019a).

2.5 | Age composition estimates

Pollock age composition was estimated using the VAST model 
fit to catch by age using NBS and EBS survey data (Thorson & 
Barnett, 2017; Thorson & Haltuch, 2019). This is the age-based 
spatio-temporal model (model 3 from above) to generate age com-
positions. Age classes were separated out into distinct age classes 
ranging from recruitment (age 1) to age 15+ (fish age 15 and older) 
for a total of fifteen age classes. This approach estimates the propor-
tions at age by fitting a spatio-temporal delta model to expanded 
numbers per age group 

(
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)
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et al., 2015).
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Spatio-temporal and spatial correlation were assumed indepen-
dent for each factor. The spatial domain was set to include 100 knots 
representing the Gaussian random fields. Spatial variables were de-
fined at 100 knots, within a “predictive process” framework (Banerjee, 
Gelfand, Finley, & Sang, 2008; Thorson, 2019a). Locations are assumed 
to have all spatial variables equal to the value at the nearest knot, and 
so the spatial resolution for population density estimates is defined by 
the number of knots (as opposed to the finer-scale spatial resolution of 
the model-based predictions in the previous section).

Estimated proportion of each age class and biomass was used to 
predict density dc(k,t) at every knot k and year t.

This density estimate was then used to predict the total biomass 
for the entire region considered for each age class c

where a(k) is the area associated with knot location k, nc is the total 
number of categories c, and nk is the total number of spatial units. Area 
swept for this data was treated as a catchability covariate so as to influ-
ence efficiency but not predicted densities. This index was then used 
to calculate the proportion of biomass in each age class relative to the 
entire population.

2.6 | Parameter estimation

For both models, fixed effects were estimated by maximizing the 
marginal log-likelihood function using Template Model Builder (TMB; 
Kristensen et al., 2016). A gradient-based non-linear minimizer was 
used to determine the maximum likelihood estimate and confirmed 
that all absolute gradients of the marginal log-likelihoods with re-
spect to each fixed effect was <0.001. The stochastic partial dif-
ferential equation (SPDE) method was used as a spatial smoother 
to approximate the probability of spatial random effects (Lindgren, 
Rue, & Lindström, 2011). It was assumed that the Matérn function 
was isotropic (correlations decline at the same rate in any direction; 
Thorson et al., 2015). Finally, we used the epsilon bias-correction esti-
mator to account for retransformation bias when calculating the total 
biomass and the center of gravity for each survey region (Thorson & 
Kristensen, 2016).

2.7 | Pollock stock assessment case study

We fit the three alternative survey data sets and estimates to 
the same stock assessment model (fishery and other data were 
the same). The data covered the EBS and NBS to determine if 

spatio-temporal model-based estimates were feasible to use for 
the stock of pollock in the Bering Sea. The first model fit bot-
tom trawl biomass indices and age compositions generated in a 
design-based method from NBS and EBS survey data. The sec-
ond model fit model-based biomass indices and design-based age 
compositions using NBS and EBS survey data. The third model fit 
model-based biomass indices and age compositions. Both obser-
vational data from the AFSC bottom trawl as well as the model-
based VAST biomass index estimates generated in section B were 
used in the existing pollock stock assessment model implemented 
in ADMB assessment software and the estimated age composi-
tions derived from VAST as described in the previous section 
(Fournier et al., 2012). Model fits accounted for the covariance 
estimates over the index time series by applying the VAST model-
based estimated covariance matrix for the likelihood calculations 
comparing assessment model predictions with VAST estimates. 
This accounts for the fact that the annual VAST index values and 
corrections for density-dependent efficiency are not independ-
ent (compared to design-based indices in which annual values are 
independent; Kotwicki, Ianelli, & Punt, 2014). The baseline model 
for pollock in this study included constant natural mortality rates 
at age, consistent with the stock assessment (Ianelli et al., 2019). 
We evaluated the 2019 stock assessment model (Ianelli et al., 
2019) performances by using root mean square error (RMSE) for 
catch per unit effort, or the standard deviation of residuals, as 
a goodness-of-fit metric and coefficients of variation (CV). We 
also compared parameter estimates and their standard deviations 
between stock assessment model fits. Parameters compared in-
cluded steepness, fishing mortality, biomass (age 1+), recruitment 
(age 1) estimates, and allowable biological catch (ABC). Steepness 
is a widely used metric in fisheries management to understand 
the relationship between the reproductively mature individuals 
in a population (spawning stock) and the new offspring entering 
the population (recruits). Steepness is defined as the fraction of 
unfished recruitment when the reproductively mature individu-
als of the population is about 20% of its unfished level (Mangel, 
Brodziak, & DiNardo, 2010). Fishing mortality is the removal of fish 
from the population due to fishing. ABC is the maximum amount 
of the fish stock that can be harvested at a determined level of 
fishing mortality without adversely affecting the fish stock pro-
ductivity and survival while accounting for scientific uncertainty 
and annual catch targets (Newman, Berkson, & Suatoni, 2015).

3  | RESULTS

3.1 | Biomass results using multiple data sources 
and environmental covariates

Pollock biomass was highly variable throughout this period (1982–
2019), but notably there was a rapid increase in pollock biomass over 
the last few years (Figure 2). From 2010 to 2019, total pollock biomass 
increased by 78% in the NBS and EBS. There was a 49% increase in 

(11)dc (k, t)=pc (k. t)× rc (k, t)

(12)I (t)=

nc∑
c=1

Ic (t)=

nk∑
k=1

a (k)×dc (k, t)

(13)p (t)=
Ic (t)

I (t)
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pollock biomass in the EBS from 2010 to 2019 and an 8% increase in 
pollock biomass from 2017 to 2019 (Figure 3). In the NBS, there was 
a 200% increase in estimated pollock biomass from 2000 to 2019 and 
a 31% increase from 2017 to 2019. It is worth noting, however, that 
the NBS only had complete spatial coverage in 2010, 2017, and 2019 
and biomass estimates in the past were likely negligible (Figure S1). 
Estimates of total biomass (age 1+) for pollock across the EBS and NBS 
have increased from 1982 to 2019 by 141% from 3,946,730 ± 307,075 
t to 9,511,702 ± 522,986 t (Figure 2). Out of the two alternative in-
dices tested, (a) an alternative biomass index using spatio-temporal 
index model without cold pool effects to generate indices, (b) an al-
ternative biomass index using spatio-temporal index model with cold 
pool effects to generate indices, the AIC indicates that including the 
cold pool extent in the spatio-temporal model was more parsimonious 
than excluding this index. The difference between AIC when including 
the cold pool extent covariate versus no environmental conditions co-
variate was 113, indicating an improvement in model prediction when 
the cold pool extent was included as a covariate.

These biomass estimates included the VAST indices that incorpo-
rated the cold pool extent (Figure S2). The summer center of gravity 
for pollock has shifted northward (Figure S3). In 1982, 99% of the pre-
dicted pollock population was in the EBS. There is a continuously de-
creasing trend for the predicted proportion of the pollock stock located 

in the EBS relative to the NBS; 89% of the total predicted stock was in 
the EBS in 2015, 81% of the predicted stock was in the EBS in 2017, and 
73% of the total predicted stock was in the EBS in 2018. As of 2019, 
84% of the known pollock population are in the EBS and 16% are in the 
NBS (Figure S3). Predicted density maps clearly indicate a large relative 
increase in density in the NBS region from 2014 to 2019 (Figure 3). The 
associated estimated cold pool effects on this density estimate indicate 
a net positive effect on these densities from 2014 to 2019, with that 
effect increasing in 2018–2019 during the same time as a dramatic de-
crease in the cold pool extent (Figure 4). Age-specific density maps in-
dicate that age classes 2–11 have increased in recent years throughout 
the entire EBS and NBS region, in particular ages 5–7 (Figure 5). This is 
likely attributable to an exceptionally strong 2012 year class.

The center of distribution for the predicted pollock summer dis-
tribution has moved about 150 km north from 1982 to 2019, and 
more than 225 km north from 1995 to 2019 (Figure S3). This north-
ward shift is accompanied by an overall increase in area occupied by 
117% (i.e., more than doubling). Pollock effective area occupied has 
increased from 137,600 to 298,900 km2. Since 2010, the effective 
area occupied has increased by 170% from 110,900 km2 in 2010 
(Figure S4). Overall, the biomass and density of pollock has increased 
throughout the entire Bering Sea region (Figures 2 and 3). These spa-
tio-temporal patterns for the pollock population were identified in 

F I G U R E  2   Pollock biomass (metric tons [t]) estimates and associated standard deviations from the spatio-temporal index model for 
the total survey area (All; salmon), northern Bering Sea (NBS; blue), and eastern Bering Sea (EBS; green) from 1982 to 2019. NBS biomass 
estimates were likely negligible in the past and only recently became substantial [Colour figure can be viewed at wileyonlinelibrary.com]
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both models that explicitly and implicitly included separate cold pool 
and temperature effects.

The CPI (representing regional temperature effects) appears 
to influence pollock spatial distribution. The model that included 

regional temperature appears to have relatively little effect on 
relative biomass estimates for pollock found in the NBS and in 
the entire Bering Sea (EBS and NBS combined), but does provide 
useful information regarding spatial distribution. There were three 

F I G U R E  3   Estimated pollock log-density (kg/km2) from 1982 to 2019 for the spatio-temporal index model with cold pool effects, where 
warmer colors indicate higher densities and cooler colors indicate lower densities [Colour figure can be viewed at wileyonlinelibrary.com]
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notable recent years, 2012, 2018, and 2019, where the cold pool 
appears to have a net negative in 2012 and net positive effect in 
2018 and 2019 on estimated age 1 + pollock density in the north-
ern extent of the Bering Sea (Figure 4, Figure S2). In 2012, there 

was no sampling in the NBS. Other years where the cold pool ap-
pears to have a high net negative effect on pollock density in the 
northern extent of the Bering Sea include 1999, 2008, and 2009 
(Figure 4, Figure S2). Other years where the cold pool appears to 

F I G U R E  4   Estimated effects of cold pool extent on pollock density from 1982 to 2019 for the spatio-temporal index model with cold 
pool effects, where warmer colors indicate a positive net effect and cooler colors indicate a negative net effect [Colour figure can be viewed 
at wileyonlinelibrary.com]
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have a net positive effect on pollock density in the northern extent 
of the Bering Sea include 1987, 1989, 1996, 2002–2005, and 2016. 
The greatest variability in overall biomass appears to occur in the 
NBS region in the final 6 years (Figures 2 and 3).

3.2 | Age composition results

Expanding age composition data using a spatio-temporal model (after 
applying an age-length key to expand from subsampled lengths to 

ages) demonstrates broad agreement between methods, and there-
fore, the use of spatio-temporal age composition estimates for popu-
lation dynamics studies is feasible to include in stock assessment. The 
expanded age compositions using VAST output are very similar to 
those age compositions from the observed age-length key for the EBS 
in isolation (Figure 6). For example, a strong age-3 cohort appeared in 
1992 for both model-based and design-based estimates of proportion 
at age. The largest differences occur in proportion at age for age-1 
fish, including in 1983, 1985, 1997, 1998, 2005, 2008, and 2014. In 
each of these cases, the design-based proportion at age estimates 

F I G U R E  5   Age-based spatio-temporal model pollock density estimates for ages 1 to 15 + in 1982, 2012 (large cold pool year), 2018, and 
2019 (small cold pool year) [Colour figure can be viewed at wileyonlinelibrary.com]
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were higher for each of these age classes. In the instances where the 
proportion at age estimates differed between the two methods for 
fish older than age 1, the model-based estimate for proportion in each 
age class were higher (e.g., 1997, 1998, 2012, 2014; Figure 6, Fig S4).

In addition to temporal trends in age compositions for pollock, 
VAST provided a spatial estimate of proportions at age (Figure 5). 
In the last 5 years from 2015 to 2019, ages 2 to 10 increased in 
density in the NBS, while regional increases in density for ages 
11–15 + are less obvious. The older age classes, particularly age 
15+, are much more widely distributed throughout the Bering 
Sea region across the entire period. The NBS has the most vari-
able average age of fish, ranging from 2 to 8. The average age of 
fish in the EBS, however, appears to be steadily increasing from 
age 3 in 1982 to age 5 in 2019. Ages 4–7 have the largest vari-
ation in density in the final 10 years 2000–2019, particularly in 
the EBS.

3.3 | Stock assessment results

While broad parameter estimate patterns are similar between 
all models, the stock assessment model fit that included the 

spatio-temporal index model estimated between 8% and 13% higher 
spawning stock biomass from 2012 to 2019. The stock assessment 
model fits that included the age-based spatio-temporal model esti-
mated between 6% and 11% higher spawning stock biomass from 
2012 to 2019 (Figure 7). This is due to the 1%–11% and 1%–9% 
higher recruitment estimated between 2009 and 2014 for the stock 
assessment model fit with spatio-temporal and age-based spatio-
temporal model indices compared to the fit with design-based only 
indices, respectively (Figure 8, Figure S5). All model fits were able 
to capture similar trends and uncertainty in the majority of the esti-
mated model parameters. The spatio-temporal and age-based model 
indices fit had greatest model prediction accuracy and lowest RMSE, 
where RMSE = 0.20 for the model fit with design-based only indices, 
RMSE = 0.17 for the model fit with spatio-temporal model indices, 
and RMSE = 0.16 for the model fit with spatio-temporal and age-
based spatio-temporal model indices. The CVs associated with these 
estimates were similarly close in value. Also notable were the similar 
estimates for steepness parameters (0.66) and fishing mortality for 
all three models. The differences among stock assessment models 
that use only design-based data versus model-based biomass esti-
mates would result in a maximum decrease in the ABC of 93 kilo-
tonnes (or about 3%).

F I G U R E  6   Design-based (salmon) and model-based (blue; age-based spatio-temporal model) age composition data expansion for 
age one (top) to age fifteen+ (bottom) based on age-length keys from survey data from 1982 to 2019 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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4  | DISCUSSION

In this study, we demonstrated a general approach to climate-respon-
sive stock assessment, whereby data from process-research and cli-
mate-adaptive sampling programs are combined with historical data 
to obtain stock assessment inputs that are representative of the stock 
area resulting from climate-driven distribution shifts. Specifically, we 
show that when combining multiple data sets that span different tem-
poral and spatial scales, we can use VAST to estimate age- and region-
specific indices using an AR1 process in a spatio-temporal framework. 
We used a real-world case study to demonstrate this spatio-temporal 
approach to estimate age compositional data for use in the pollock 
stock assessment model, noting that in recent years pollock density has 
increased in the northeastern portion of the Bering Sea. We were able 
to extract spatio-temporal age composition information from existing 
data sets and incorporated them into stock assessment software, con-
firming that this application of VAST output is feasible with reasonable 
index and age composition outputs. Using VAST output for stock as-
sessment was previously done for fisheries managed by the U.S. Pacific 
and North Pacific Fisheries Management Councils (Lunsford et al. 2015; 
Cunningham, Hulson, Lunsford, & Hanselman, 2018; Fenske, Hulson, 
Lunsford, Shotwell, & Hanselman, 2018; Thorson & Haltuch, 2019; 
Thorson & Wetzel, 2015). We envision this spatio-temporal modeling 

tool as an additional stock assessment input for spatio-temporal avail-
ability and age composition for not only one of the most valuable fish-
eries in the USA, but for other fisheries around the world, as well.

The results of the VAST spatio-temporal framework on the pollock 
distribution show an increasing proportion of pollock in the NBS in 
recent years. The spatial area occupied by ages 4–7 appears to be in-
creasing across the Bering Sea, particularly in 2018 and 2019, suggest-
ing that age-specific spatial distribution may be changing. Previous 
studies have shown that including local temperature as a covariate 
had little impact on relative pollock biomass estimates (Kotwicki & 
Lauth, 2013; Thorson et al., 2017). However, here the model that 
included cold pool effects estimated a reduced proportion of total 
biomass in the NBS in 2012 in response to a larger-than-average cold 
pool extent. When the cold pool became much smaller during 2014 to 
2019, an increased proportion of total biomass occurred in the NBS 
for models with and without the cold pool effect included. However, 
the model with a cold pool effect indicated greater biomass in the NBS 
(Figure 4, Figure S2). The estimated effects of the cold pool extent on 
pollock density highlight the positive net effect of the decreasing cold 
pool extent on the pollock biomass density in the northeastern por-
tion of the Bering Sea, particularly in 2018 and 2019 (Figure 4). Pollock 
biomass was most variable in the final six years of the study, when the 
Bering Sea waters were exceptionally warm, the heat content of the 

F I G U R E  7   Mean estimated spawning stock biomass (SSB) estimates (lines) and confidence intervals (shading) from 1964 to 2019 using 
the design-based (Base; salmon), spatio-temporal model with cold pool effects based (VAST; green), and spatio-temporal model based with 
model estimated age composition (VAST With Age; blue) [Colour figure can be viewed at wileyonlinelibrary.com]
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water was higher than historical records, and the cold pool was greatly 
reduced or disappeared (Thoman and Walsh 2019). These results to-
gether suggest that behavioral (e.g., movement) responses to regional 
environmental conditions play an important role in spatial distribution 
for pollock; for example, where pollock select habitat based on re-
gional changes in productivity, prey distribution, and other biological 
factors that are associated with interannual variation in regional tem-
perature, but not necessarily the local temperature at a given loca-
tion. The magnitude of the cold pool extent effect on these responses 
seems particularly strong in 2018 and 2019, both years when the cold 
pool extent was reduced extensively from historical levels and pol-
lock distribution changed rapidly (Figure 4). This highlights the recent 
changes both in the oceanographic conditions in this region as well as 
the likely impact that the reduction of a physical temperature barrier 
had on the pollock densities in the last few years.

Pollock indices and area occupied reflect non-local changes in 
temperature, but many alternative climate, ecosystem, and fishery 
hypotheses should be considered to explain pollock spatio-tempo-
ral distributions. In the current VAST configuration, missing process 
elements of the model likely contribute to unexplained variance 
of pollock spatio-temporal distribution. We incorporated the re-
gional effects of the cold pool as a linear impact, but temperature 
effects may be non-linear (Thorson et al., 2017). As well, regional 

temperature effects may not be continuous with respect to its im-
pact on density, but rather differences in habitat availability or qual-
ity may only occur at the extremes of the cold pool extent (e.g., 2012 
for large and 2019 for small cold pool). Another potential influence 
on pollock spatio-temporal distribution is that regional temperature 
effects may not be due to the magnitude of those temperatures, 
but instead regional climate and biological phenologies (seasonal 
patterns) or an apparent shift in distribution due to changes in the 
timing of feeding migration or other life-history events (Edwards & 
Richardson, 2004; Henderson, Mills, Thomas, Pershing, & Nye, 2017; 
Nye et al., 2009). The influence of regional temperature on pollock 
spatio-temporal biomass may also be a result of complex interactions 
with other oceanographic, ecosystem, or fisheries drivers. Pollock 
spatio-temporal distributions may reflect prey availability, direct 
predation (e.g., marine mammals, birds, other fish), behavior avoid-
ance of other species, indirect fisheries effects on the ecosystem, or 
direct fisheries effects on the size of fish (and therefore fecundity, 
age at maturity, mortality; Ianelli et al., 2019; Kotwicki et al., 2005).

We note that there was incomplete spatial or temporal cover-
age in the NBS region, particularly in earlier periods of the time 
series. This likely makes it difficult to resolve the relationship 
between the cold pool extent and the distribution of pollock in 
the NBS, as many of the density estimates in the NBS occurred 

F I G U R E  8   Estimated recruitment from 1964 to 2019 using the design-based (Base; salmon), spatio-temporal model based with cold pool 
effects (VAST; green), and age composition spatio-temporal model based with estimated age composition (VAST + Age; blue) estimates 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


554  |     O’LEARY Et AL.

in years with missing data and so were a result of spatial interpo-
lation and exponential decay given spatial correlation estimates. 
This interpolation of densities over areas with missing data using 
information from previous years from the same region increases 
the uncertainty and may bias density estimates if these vary 
greatly from year to year, and there is no covariate capturing this 
process. However, some studies demonstrate that a spatio-tem-
poral model framework that includes environmental covariates, 
like this study, can accurately estimate species biomass and spatial 
patterns (Brodie et al., 2020). Studies investigating the number of 
additional survey stations needed to reliably estimate the relation-
ship between NBS pollock density estimates and the cold pool ex-
tent should continue, with emphasis on understanding estimation 
bias.

Future research should continue to explore and improve per-
formance when using spatio-temporal models and spatially un-
balanced data to conduct climate-adaptive stock assessments. In 
particular, we suggest that as more data from the NBS become 
available (particularly related to the age composition and size at 
age) it be evaluated and incorporated in the assessment (includ-
ing an evaluation of spatially stratified age-length keys; Berg & 
Kristensen, 2012). Assimilating data from regions neighboring stan-
dard survey areas, such as the Chukchi Sea and the western Bering 
Sea, would improve understanding and management efforts as fish 
distributions change under a warming climate. Additionally, simu-
lation experiments could be used to compare any biases that arise 
when an assessment ignores biomass in the NBS despite increases 
in biomass variance when using spatially unbalanced sampling. It is 
also important to consider the possibility of increased pollock mi-
grations into the northwestern Bering Sea (and outside of the U.S. 
national boundaries) from the eastern and northern Bering Sea area 
(Kotwicki et al., 2005). We argue that responding appropriately to 
climate-driven distribution shifts, as done in Ianelli et al. (2019), can 
be refined as more data are processed (i.e., age-determination sam-
ples are completed) and alternative evaluations of stock structure 
become evident. Finally, we believe that adapting stock assessments 
to climate-driven distribution shifts requires an iterative process 
that includes assessment reviewers, managers, and stakeholders. In 
the Alaska region in particular, this requires defining an annual or 
multi-year “terms of reference” for how to structure models that 
are used to provide information used for management; progress 
is underway to define this regionally, and the present analysis will 
serve in part to show the importance of properly accounting for the 
proportion of biomass in the NBS.

Through this pollock case study, we provide an example of 
how to extract spatio-temporal age composition and biomass in-
dices from multiple data sets for application in an age-structured 
stock assessment used for management advice. Future research 
can use these tools to explore these model-based inputs into 
stock assessments, as well as develop simulation studies to under-
stand the potential impact of these additional model-based indi-
ces and age compositions on stock assessment estimates. These 

spatio-temporal tools, paired with existing data and stock assess-
ment approaches to estimate population dynamics, will help us 
explore and understand population-wide distribution and density 
shifts for a $451.2 million value fishery in landings and $1.98 billion 
in processed fisheries products (National Marine Fisheries Service 
2020).
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